
Zeppe-Lin Handbook

Page 1handbook 2.0.0

Zeppe-Lin Handbook

Page 2handbook 2.0.0

1. PREFACE
This handbook (and Zeppe-Lin itself) is inspired and based on the CRUX Handbook. The original

version was written by Per Liden mailto:per@fukt.bth.se and
maintained by CRUX Team. This
implementation was reworked and adapted
for Zeppe-Lin by Alexandr Savca
mailto:alexandr.savca89@gmail.com.

Zeppe-Lin Handbook

Page 3handbook 2.0.0

2. INTRODUCTION
Welcome to the Zeppe-Lin Handbook! It's not an extensive guide on how
to use and configure
common Linux software. The purpose of the
handbook is to explain how to install, configure, and
maintain
Zeppe-Lin systems, and to highlight the differences between common
Linux distributions and
Zeppe-Lin.

The online version of this handbook is placed at: http://zeppel.ink/handbook.7.html.

The pdf version of this handbook can be downloaded at: http://zeppel.ink/handbook.7.pdf.

The local copy of this handbook can be installed on Zeppe-Lin system
by the following
command:

 # pkgman install handbook

2.1. What is Zeppe-Lin?
Zeppe-Lin is a lightweight GNU/Linux distribution for the x86-64
architecture targeted at experienced
users. It is forked from CRUX
and the primary focus of this distribution is "keep it simple" too.

The KISS principle reflects in a simple tar.gz-based package
system, BSD-style init scripts, and a
relatively small collection of
trimmed packages.

The secondary focus is the utilization of new GNU/Linux features and
recent tools and libraries.

2.2. Why use Zeppe-Lin?
In short, Zeppe-Lin might suit you very well if you are:

an experienced user who wants a clean and simple GNU/Linux
distribution as a foundation of
your installation;

a person who prefers editing configuration files with an editor to
using GUI;

someone who does not hesitate to download and compile programs from
the source;

someone who wants a KISS GNU/Linux distribution as a foundation of
your own distro;

Zeppe-Lin Handbook

Page 4handbook 2.0.0

3. LICENSE
3.1. Packages

Since Zeppe-Lin is a GNU/Linux distribution, it contains software
written by a lot of different people.
Each software package comes
with its own license, chosen by its author(s). To find out how a

particular package is licensed, have a look at its source code.

3.2. Build Scripts
All package build scripts in Zeppe-Lin are Copyright (C) 2000-2021 by
Per Liden
mailto:per@fukt.bth.se and CRUX team http://crux.nu
and are released under the GPLv3+: GNU
General Public License version
3 or later https://gnu.org/licenses/gpl.html.

3.3. NO WARRANTY
Zeppe-Lin is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without
even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Use it at
YOUR OWN RISK.

Zeppe-Lin Handbook

Page 5handbook 2.0.0

4. INSTALLATION
4.1. Supported Hardware

Packages on the official rootfs image are compiled with
optimization for x86-64 (AMD Athlon 64, Intel
Core, Intel Atom) or
newer processors. Do not try to install it on an i686 (Pentium Pro,
Celeron,
Pentium-III) or lower processor, it simply will not work.

4.2. Boot a Live System
Since Zeppe-Lin is distributed in the form of a compiled tarball
containing a root filesystem, you will
first need to boot your
computer using a Linux-based image, so called "Live CD/DVD/USB"
operating
system.

Boot from the live CD/DVD/USB, open a terminal and get root privileges
(e.g. sudo su).

4.3. Disk Partitions and Filesystems
4.3.1. UEFI and LVM-on-LUKS

This section describes how to set up Zeppe-Lin on a fully encrypted
disk (apart from the bootloader
partition). We will have an LVM
container installed inside an encrypted partition. To encrypt the

partition containing the LVM volume group, dm-crypt (which is
managed by the cryptsetup(8)
command) and its LUKS subsystem is
used.

Important:

Make sure you have the following packages installed on your live
system: parted, dosfstools,
cryptsetup, and lvm2.

4.3.1.1. Partition scheme

This is a quite simple partition scheme used in this section. There
is a SCSI disk /dev/sda, but if you
have an NVME disk (like /dev/nvme0n1) or another SCSI disk (like /dev/sdb), it's simple
as run
sed 's/sda/sdb/g'.

 +-----------+------------+------------------+----------------+
 | Partition | Filesystem | Size | Description |
 +-----------+------------+------------------+----------------+
 | /dev/sda1 | fat32 | 512MB | boot partition |
 | /dev/sda2 | luks | rest of the disk | luks partition |
 +-----------+------------+------------------+----------------+

Important:

On UEFI systems with a GPT-partitioned disk, there must be an EFI
system partition (ESP).
The suggested size is around 512 MiB.

4.3.1.2. Create the partitions

Using parted(8) utility we can create all required partitions.

 # parted /dev/sda
 (parted) mklabel gpt
 (parted) mkpart ESP fat32 1MiB 513MiB
 (parted) set 1 boot on
 (parted) name 1 efiboot
 (parted) mkpart primary 513MiB 100%
 (parted) name 2 luks
 (parted) quit

Encrypt the second (luks) partition with LUKS and open the LUKS
device (for example, as crypt
mapped name):

 # cryptsetup luksFormat /dev/sda2

Zeppe-Lin Handbook

Page 6handbook 2.0.0

 # cryptsetup luksOpen /dev/sda2 crypt

4.3.1.3. Create LVM inside LUKS device

Create a physical volume and a new volume group (named zpln for
example):

 # pvcreate /dev/mapper/crypt
 # vgcreate zpln /dev/mapper/crypt

Before creating the logical volumes, this is a quite simple logical
volumes scheme used in this section:

 +-------------+------------+------------------+-------------+
 | Volume name | Filesystem | Size | Description |
 +-------------+------------+------------------+-------------+
 | swap | swap | 2 * RAM | swap area |
 | root | ext4 | rest of the disk | root fs |
 +-------------+------------+------------------+-------------+

To see the actual amount of RAM, type the following command:

 # free -m

For example, we have 4GB RAM. The swap will have 8GB. Let's create
the aforementioned two
logical volumes:

 # lvcreate -L 8G -n swap zpln
 # lvcreate -l 100%FREE -n root zpln

4.3.1.4. Create the filesystems

Create a FAT32 filesystem for the first (boot) partition:

 # mkfs.vfat -F32 /dev/sda1

Create root filesystem:

 # mkfs.ext4 /dev/zpln/root

Format swap logical volume as swap area and activate it:

 # mkswap /dev/zpln/swap
 # swapon /dev/zpln/swap

4.3.1.5. Mount prepared partitions

In this handbook, the /mnt directory is used as a default
mountpoint.

 # mount /dev/zpln/root /mnt
 # mkdir /mnt/boot
 # mount /dev/sda1 /mnt/boot

4.4. Install Base System
4.4.1. Download rootfs tarball

As mentioned before, the /mnt directory is the default mountpoint
for our system. Let's download the
rootfs tarball into this directory
so we won't pollute live CD/DVD/USB RAM:

 # cd /mnt
 # wget -c

Zeppe-Lin Handbook

Page 7handbook 2.0.0

https://github.com/zeppe-lin/pkgsrc-core/releases/download/v0.99.1/rootfs-v
0.99.1-x86_64.tar.xz{,.sig}

4.4.2. Verify downloaded tarball

Zeppe-Lin rootfs tarball is signed using GPG.
It's a good practice to verify authenticity and integrity of

downloaded files when possible.

 # gpg --keyserver keyserver.ubuntu.com --recv-keys 59ec1986fbd902cf
 # gpg --verify rootfs-v0.99.1-x86_64.tar.xz{.sig,}

4.4.3. Extract rootfs tarball

Once the rootfs tarball is downloaded and verified, extract the
contents with the following command:

 # tar --numeric-owner --xattrs --xattrs-include='*' -xpf \
 rootfs-v0.99.1-x86_64.tar.xz

Important:

It is very important to use all the options included above. See below
for details.

Here are what the options to tar(1) do:

--numeric-owner

Without this option, tar(1) will map ownership and group ownership
based on the UID to user
and GID to group mappings as defined on the
Live CD/DVD/USB. By specifying
--numeric-owner we tell that we
want the numeric values of the UIDs and GIDs in the tarball
to be
preserved on disk, so when your Zeppe-Lin system boots, the UIDs and
GIDs are set
correctly for Zeppe-Lin.

--xattrs --xattrs-include='*'

Zeppe-Lin uses filesystem extended attributes to set Linux
capabilities, which allow for certain
programs such as ping to have
enhanced privileges without having to be fully 'suid root'. Even
with
the -p option, tar(1) will not restore extended attributes we
need unless these two options
are specified.

-xpf

Extract (x), preserve regular permissions and ownership (p), and
use the filename (f)
specified.

4.5. Chroot Into Base System
Copy DNS configuration to have the availability to use the network
from the chrooted root:

 # cp /etc/resolv.conf etc/resolv.conf

Mount Linux's pseudo-filesystems:

 # mount -B /dev /mnt/dev
 # mount -B /tmp /mnt/tmp
 # mount -B /run /mnt/run
 # mount -t proc proc /mnt/proc
 # mount -t sysfs none /mnt/sys
 # mount -t devpts -o noexec,nosuid,gid=tty,mode=0620 devpts \
 /mnt/dev/pts

 (UEFI only)
 # mount -B /sys/firmware/efi/efivars /mnt/sys/firmware/efi/efivars

Zeppe-Lin Handbook

Page 8handbook 2.0.0

 # chroot /mnt /bin/bash

Set the SHELL environment variable to /bin/bash in the chrooted
environment, to be available to call
:shell in vim, for example, or
other tools that relies on SHELL. This needs if the shell used
outside
chroot is zsh, fish, or something else that is not present in
chroot environment:

 (chrooted) # export SHELL=/bin/bash

4.6. Configure The Base System
Set the root password:

 (chrooted) # passwd root

Make sure files have proper ownership and permissions:

 (chrooted) # chown root:root /
 (chrooted) # chmod 755 /

Glibc does not contain all possible locales, thus you'll have to
generate the locales you need/use. To
ensure the proper operation of pkgmk(8), the locale C.UTF-8 is generated as part of the
Zeppe-Lin
installation. Any other desired locales must be created by
the administrator. Let's prepare
en_US.UTF-8 (you may choose
locale you need):

 (chrooted) # localedef -i en_US -f UTF-8 en_US.UTF-8

Then add export LANG=en_US.UTF-8 to /etc/profile to make it
system-wide.

Edit /etc/fstab (see fstab(5) for more information) to configure
your filesystems and add the prepared
partitions. For example, for 4.3.1. UEFI and LVM-on-LUKS installation, you may specify the
following:

 /dev/zpln/root / ext4 defaults,noatime,nodiratime 1 2
 /dev/sda1 /boot vfat defaults,noatime,nodiratime 1 2
 /dev/zpln/swap swap swap defaults 0 0

Note:

You can use /dev/disk/by-uuid/* or UUID=xxx instead of /dev/* used above to
prevent boot failures on machines with
multiple disks. Use blkid(8) to verify the disk's UUID:

 (chrooted) # blkid -o value -s UUID <DEVICE>
 ...

Uncomment /var/cache/pkgmk/work if you want to build packages in
RAM.

Mount fstab entries:

 At least python3 won't build without that:
 (chrooted) # mount /dev/shm

 If you setup UEFI:
 (chrooted) # mount /sys/firmware/efi/efivars

 If you setup using tmpfs for /tmp:
 (chrooted) # mount /tmp

 If you setup to build packages in RAM:
 (chrooted) # mount /var/cache/pkgmk/work

Zeppe-Lin Handbook

Page 9handbook 2.0.0

Edit /etc/rc.conf (see rc.conf(5) for more information) to
configure font, keyboard, timezone,
hostname, and services.

Edit /etc/rc.d/net, /etc/hosts, and /etc/resolv.conf to
configure your network (IP
address/Gateway/Hostname/Domain/DNS). If
you want to configure the networking bridge, see
/etc/rc.d/bridge.

It's better to add the ordinary user now if you want a specific user
id because the following installation
of packages creates its own
users and they may occupy your id:

 (chrooted) # useradd --shell /bin/bash --create-home \
 --groups audio,video,scanner,cdrom,input,users \
 --uid 1000 --user-group $USERNAME

 (chrooted) # passwd $USERNAME

To make this user privileged (e.g. as Ubuntu does), first, you need to
add the $USERNAME to the
wheel group:

 (chrooted) # usermod -aG wheel $USERNAME

And second, grant the users in the whell group to be root:

 #
 # /etc/sudoers.d/00wheel: grant users in the wheel group to be root
 #

 %wheel ALL=(ALL:ALL) ALL

 # End of file.

4.7. Prepare The PKGSRC Repos
Packages' sources are organized in so-called collections, see 6.1.3. The pkgsrc collections for more
information about that.

Clone the collections you need, but keep in mind that each subsequent
collection depends on the
previous ones.

 (chrooted) # cd /usr/src/
 (chrooted) # git clone https://github.com/zeppe-lin/pkgsrc-core
 (chrooted) # git clone https://github.com/zeppe-lin/pkgsrc-system
 (chrooted) # git clone https://github.com/zeppe-lin/pkgsrc-xorg
 (chrooted) # git clone https://github.com/zeppe-lin/pkgsrc-desktop

Edit /etc/pkgman.conf (see pkgman.conf(5) for more information)
and enable the collections you
cloned. By default, only core
collection is enabled. Also, you may like to edit /etc/pkgmk.conf
(see
pkgmk.conf(5) for more information).

4.8. Update The Base System
Before installing any package you need, it's highly recommended to
update the system which you just
installed.

Warning:

Starting from version 6.0, pkgutils has broken backward
compatibility when generating
footprint files. So, at the beginning
it is recommended to update pkgmk and pkgutils:

 (chrooted) # pkgman update -f pkgmk pkgutils

Zeppe-Lin Handbook

Page 10handbook 2.0.0

The following command tells to pkgman(1) to run system update (with
dependency handling/sorting)
and to stop if installation of at least
one package fails:

 (chrooted) # pkgman sysup --deps --depsort --group

It's also recommended to merge the files that were rejected during
updates:

 (chrooted) # rejmerge

4.9. Install essential packages
Let's install all the necessary packages for the so-called
workstation:

 (chrooted) # pkgman install --deps --group \
 cryptsetup e2fsprogs dosfstools grub2 grub2-efi iw gnupg \
 lvm2 pinentry wireless-tools wpa-supplicant dhcpcd iputils

Edit /etc/rc.d/dhcpcd and /etc/rc.d/wpa_supplicant and setup
your network interfaces.

Note:

If you configured the networking
bridge, don't forget to specify the bridge interface to dhcpcd

and/or wpa_supplicant RC scripts.

4.10. Prepare a Linux Kernel
Follow only one of the two following subsections.

4.10.1. Install kernel package

The pkgsrc-system collection provides a package with the kernel and
non-free firmware:

 (chrooted) # pkgman install --deps --group \
 --config-append="runscripts no" linux linux-firmware

This linux package has a post-install script that executes mkinitramfs(8) and updates the grub
config. We turn off the
execution of this script because we'll do it manually. It is useful
when regularly
updating the system but now it's unnecessary.

Note:

You may like to lock the linux package and not update it during
regular system updates, since
the update will remove the current
working kernel and its modules. If you plan not to turn off
the
computer for a long time, it is better to do this and update the
kernel separately, through
pkgman-update(8). See pkgman-lock(8)
for more information about package locking.

If you installed the kernel package through a package manager, you can
jump over the next
paragraph, to the 4.11. Prepare Initramfs Image.

4.10.2. Install the kernel manually

Since the pkgman(1) build the package that contains only the
binaries (kernel and modules), you may
want to build your own kernel.
For example, you do not need such a fat kernel, which goes by default,
or you need the sources of the running kernel because you want to
build the Nvidia driver and/or
VirtualBox.

In this case, it is recommended to use the kernel from package sources.

So, let's download the linux source:

 (chrooted) # pkgman install -do linux

The -do option means download-only. The source is downloaded
to /var/cache/pkgmk/sources if
you have not changed the PKGMK_SOURCE_DIR location in /etc/pkgmk.conf. Unpack it:

Zeppe-Lin Handbook

Page 11handbook 2.0.0

 (chrooted) # tar -xvf \
 /var/cache/pkgmk/sources/linux-5.4.X.tar.?z -C /usr/src/

You may want to enable Zeppe-Lin's patches:

 (chrooted) # cd linux-5.4.X
 (chrooted) # for p in $(pkgman path linux)/*.patch; \
 do patch -Np1 -i $p; done

If you have downloaded a non-packaged kernel, you can print the
results of applying the patches
without actually changing any files.
Just add --dry-run option.

Next, you can create your own, minimal config and adjust it to your
system:

 (chrooted) # make menuconfig

Or you can use the all-inclusive config from the package:

 (chrooted) # cp $(pkgman path linux)/x86_64-dotconfig .config
 (chrooted) # make olddefconfig

Build the kernel and modules:

 (chrooted) # make -j$(nproc) all

Install the kernel and modules:

 (chrooted) # KV=$(make kernelversion)
 (chrooted) # cp arch/x86/boot/bzImage /boot/vmlinuz-$KV
 (chrooted) # cp .config /boot/config-$KV
 (chrooted) # make modules_install

You may still need to install the kernel non-free firmware:

 (chrooted) # pkgman install --deps linux-firmware

Next, we need to prepare the initramfs and update our bootloader.

Zeppe-Lin Handbook

Page 12handbook 2.0.0

4.11. Prepare Initramfs Image
Install mkinitramfs package:

 (chrooted) # pkgman install --deps mkinitramfs

Add the mkinitramfs configuration file (/etc/mkinitramfs/config)
with the following content:

 #
 # /etc/mkinitramfs/config: mkinitramfs(8) configuration
 #
 # See mkinitramfs.config(5) for more information.
 #

 hostonly=1 #(optional)
 compress="gzip --fast"
 hooks="eudev luks lvm resume"
 root=/dev/zpln/root
 root_type=ext4
 resume=/dev/zpln/swap
 luks_name=crypt
 luks_root=/dev/sda2

 # End of file.

See mkinitramfs.config(5) for more information.

Note:

As in case of /etc/fstab, you can use /dev/disk/by-uuid/* or UUID=... instead of
/dev/* to prevent boot failures on machines
with multiple disks. Use blkid(8) to verify the
disk's UUID:

 (chrooted) # blkid -o value -s UUID <DEVICE>
 ...

Now, prepare an initramfs. If you installed the linux kernel
manually, you have already set KV
variable to kernel version.
Otherwise, obtain the kernel version from package source like the

following:

 (chrooted) # KV=$(pkgman printf %v --filter=linux)

Now, generate an initramfs image:

 (chrooted) # mkinitramfs -o /boot/initramfs-$KV.img -k $KV

Zeppe-Lin Handbook

Page 13handbook 2.0.0

4.12. Install a Bootloader
4.12.1. GRUB

Create /etc/default/grub file with the following content:

 GRUB_TIMEOUT=3
 GRUB_DISTRIBUTOR=ZPLN
 GRUB_CMDLINE_LINUX_DEFAULT="quiet resume=/dev/zpln/swap"

Next, install GRUB on /dev/sda (your case may differ) drive:

 (chrooted) # grub-install --target=x86_64-efi \
 --efi-directory=/boot /dev/sda

Update GRUB configuration file:

 (chrooted) # grub-mkconfig -o /boot/grub/grub.cfg

4.13. Post-installation Tasks
4.13.1. Install X11

See the available X11 video and input drivers, and choose the right
one:

 # pkgman search -vv xf86-

Next, install the xorg package and the drivers you wish:

 # pkgman install --deps --group xorg ...

4.13.2. Reboot

Exit from chroot and umount /mnt and reboot:

 (chrooted) # exit
 # cd /
 # umount -R /mnt
 # shutdown -r now

Zeppe-Lin Handbook

Page 14handbook 2.0.0

5. THE PACKAGE SYSTEM
5.1. Introduction

5.1.1. Basic package management tools

The package system (pkgutils) is a fork of CRUX's pkgutils.
It is made with simplicity in mind, where
all packages are plain tar.gz files (i.e. without any kind of metadata).

Packages follow the naming convention name#version-release.pkg.tar.gz, where name is the name of
the
program, version is the version number of the program, and release is the version number of the
package.

The pkg.tar.gz extension is used (instead of just tar.gz) to
indicate that this is not just any tar.gz file,
but a tar.gz
that is meant to be installed using pkgadd(8). This helps
distinguish packages from other
tar.gz files. Note that pkgmk(8) supports additional compression schemes like bzip2 with
the tar.bz2
extension, lzip with tar.lz, xz with tar.xz,
or zstd ending with tar.zst.

pkgadd(8), pkgrm(8), and pkginfo(1) are the basic package
management utilities and are part of the
package pkgutils. In
addition to them, package management includes utilities such as pkgmk(8),
rejmerge(8), and revdep(1).

They could also be considered basic, but they are placed in separate
packages so that changes in
one utility do not require rebuilding all
of them.

With these utilities, you can install, uninstall, inspect, make
packages, query the package database,
merge files that were rejected
during package upgrades, and check for missing libraries of installed

packages.

When a new package is installed using pkgadd(8), a new record is
added to the package database
(stored in /var/lib/pkg/db). The
basic package system does not have any kind of dependency
checking,
this will not warn you if you install a package that requires other
packages to be installed.
The included pkgman(1) tool (pkgman),
however, does support dependencies.

The following sections will describe in short how to use the package
utilities. Additional information
about these utilities can be found
on their respective manpage.

5.2. Using the Package System
5.2.1. Installing a package

Installing a package is done by using pkgadd(8). This utility
requires at least one argument, the
package you want to install.
Example:

 # pkgadd bash#5.0.18-1.pkg.tar.gz

When installing a package the package manager will ensure that no
previously installed files are
overwritten. If conflicts are found,
an error message will be printed and pkgadd(8) will abort without

installing the package. The error message will contain the names of
the conflicting files. Example:

 # pkgadd bash#5.0.18-1.pkg.tar.gz
 bin/sh
 usr/share/man/man1/sh.1.gz
 pkgadd error: listed files already installed
 (use -f to ignore and overwrite)

To force the installation and overwrite the conflicting files, you
can use the option -f/--force. Example:

 # pkgadd -f bash#5.0.18-1.pkg.tar.gz

The package system allows a file to be owned by exactly one package.
When forcing an installation
the ownership of the conflicting files
will be transferred to the package that is currently being installed.

Directories can however be owned by more than one package.

Zeppe-Lin Handbook

Page 15handbook 2.0.0

Warning:

It is often not a good idea to force the installation
unless you really know what you are doing. If
a package
conflicts with already installed files it could be a sign
that the package is broken
and installs unexpected files.
Use this option with extreme care, preferably not at all.

As earlier, the package file itself does not contain any metadata.
Instead, the pkgadd(8) uses the
package filename to determine the
package name and version. Thus, when installing a package file
named bash#5.0.18-1.pkg.tar.gz, pkgadd(8) will interpret this as a
package named bash at version
5.0.18-1. If pkgadd(8) is
unable to interpret the filename (e.g. # is missing or the filename
does not
end with .pkg.tar.gz) an error message will be printed and pkgadd(8) will abort without installing the
package.

5.2.2. Upgrading a package

Upgrading a package is done using pkgadd(8) with the -u option.
Example:

 # pkgadd -u bash#5.0.18-1.pkg.tar.gz

This will replace the previously installed bash package with the new
one. If you have not previously
installed bash, pkgadd(8) will
print an error message. pkgadd(8) does not care about the version

number of the package in that you can "upgrade" version 2.05-1 with
version 2.04-1 (or even with
version 2.05-1 itself). The installed
package will be replaced with the specified package.

Upgrading a package is equivalent to executing pkgrm(8) followed by pkgadd(8) with one (big)
exception. When upgrading a package (with pkgadd -u) you have the option to prevent some of the
already
installed files from getting replaced. This is typically useful when
you want to preserve
configuration and log files.

When executing pkgadd(8) the file /etc/pkgadd.conf will be read.
This file can contain rules describing
how pkgadd(8) should behave
when doing upgrades. A rule is built out of three fragments: event,
pattern, and action. The event describes in what
kind of situation this rule applies. Currently, only one
type of
event is supported, that is UPGRADE. The pattern is a filename
pattern expressed as a
regular expression and the action applicable
to the UPGRADE event is YES or NO. More than one
rule of the same
event type is allowed, in which case the first rule will have the
lowest priority and the
last rule will have the highest priority.
Example:

 #
 # /etc/pkgadd.conf: pkgadd(8) configuration
 #

 UPGRADE ^etc/.*$ NO
 UPGRADE ^var/log/.*$ NO
 UPGRADE ^etc/X11/.*$ YES
 UPGRADE ^etc/X11/xorg.conf$ NO

 # End of file.

The above example will cause pkgadd(8) to never upgrade anything in /etc/ or /var/log/
(subdirectories included), except files in /etc/X11/ (subdirectories included), unless it's the file
/etc/X11/xorg.conf. The default rule is to upgrade everything,
rules in this file are exceptions to that
rule.

Caution:

A pattern should never contain an initial "/" since you are
referring to the files in the package,
not the files on the disk.

See pkgadd.conf(5) for more information.

Zeppe-Lin Handbook

Page 16handbook 2.0.0

5.2.2.1. Rejected files

If pkgadd(8) finds that a specific file should not be upgraded, it
will install it under /var/lib/pkg/rejected/
. Files in this
directory are never added to the package database. The user is then
free to examine,
use and/or remove that file manually. Another option
is to use rejmerge(8). For each rejected file
found in /var/lib/pkg/rejected/, rejmerge(8) will display the difference
between the installed version and
the rejected version. The user can
then choose to keep the installed version, upgrade to the rejected

version or perform a merge of the two. Example (using the above /etc/pkgadd.conf):

 # pkgadd -u bash#5.0.18-1.pkg.tar.gz
 pkgadd: rejecting etc/profile, keeping existing version

 # tree --charset=ascii /var/lib/pkg/rejected
 /var/lib/pkg/rejected
 `-- etc
 `-- profile

5.2.3. Removing a package

Removing a package is done by using pkgrm(8). This utility
requires one argument, the name of the
package you want to remove.
Example:

 # pkgrm bash

Warning:

This will remove all files owned by the package, no questions
asked. Think twice before doing
it and make sure that you did
not misspell the package name since that could remove
something
completely different (e.g. think about what could happen if you
misspelled glib as
glibc).

5.2.4. Querying the package database

Querying the package database is done using pkginfo(1). This
utility has a few options to answer
different queries.

 +-------------------------+---+
 | Option | Description |
 +-------------------------+---+
 | -f, --footprint=FILE | print footprint for FILE | |
 | -i, --installed | list installed packages and their version |
 | -l, --list=PACKAGE|FILE | list files in PACKAGE or FILE |
 | -o, --owner=PATTERN | list owner(s) of file(s) matching PATTERN |
 | -r, --root=DIR | specify an alternate root directory |
 | -v, --version | print version and exit |
 | -h, --help | print help and exit |
 +-------------------------+---+

List installed packages and their version:

 $ pkginfo -i
 audiofile 0.2.3-1
 autoconf 2.52-1
 automake 1.5-1
 ...
 xmms 1.2.7-1
 zip 2.3-1
 zlib 1.1.4-1

List files in PACKAGE or FILE:

Zeppe-Lin Handbook

Page 17handbook 2.0.0

 $ pkginfo -l bash
 bin/
 bin/bash
 etc/
 etc/profile
 usr/
 usr/share/man/
 usr/share/man/man1/
 usr/share/man/man1/bash.1.gz

 $ pkginfo -l grep#2.5-1.pkg.tar.gz
 usr/
 usr/bin/
 usr/bin/egrep
 usr/bin/fgrep
 usr/bin/grep
 usr/share/man/
 usr/share/man/man1/
 usr/share/man/man1/egrep.1.gz
 usr/share/man/man1/fgrep.1.gz
 usr/share/man/man1/grep.1.gz

List owners of files matching bin/ls:

 $ pkginfo -o bin/ls
 e2fsprogs usr/bin/lsattr
 fileutils bin/ls
 modutils sbin/lsmod

Print footprint for file:

 $ pkginfo -f xorg-xkill#1.0.5-1.pkg.tar.gz
 drwxr-xr-x root/root usr/
 drwxr-xr-x root/root usr/share/
 drwxr-xr-x root/root usr/bin/
 -rwxr-xr-x root/root usr/bin/xkill
 drwxr-xr-x root/root usr/share/man/
 drwxr-xr-x root/root usr/share/man/man1/
 -rw-r--r-- root/root usr/share/man/man1/xkill.1.gz

This feature is mainly used by pkgmk(8) for creating and comparing
footprints.

The -r/--root option should be used if you want to display
information about a package that is installed
on a temporarily mounted
partition, which is "owned" by another system. By using this option
you
specify which database to use.

5.3. Package Management Front-end: pkgman
In its current form pkgutils does not have a concept of dependency
handling. To address this, a
front-end utility called pkgman
exists. pkgman(1) supports dependency handling (with the caveat

mentioned below) as well as some overlap with pkgutils features.

5.3.1. Functionality

Some examples of pkgman's functionality and use are as follows:

Listing installed packages:

 $ pkgman list
 acl
 attr

Zeppe-Lin Handbook

Page 18handbook 2.0.0

 ...

 $ pkgman list -v
 acl 2.3.1-1
 attr 2.5.1-1
 ...

 $ pkgman list -vv
 acl 2.3.1-1: Access Control List filesystem support
 attr 2.5.1-1: Extended attribute support library for ACL support
 ...

Querying information about a package source:

 $ pkgman info acl
 Name: acl
 Path: /usr/src/pkgsrc-core
 Version: 2.3.1
 Release: 1
 Description: Access Control List filesystem support
 URL: http://savannah.nongnu.org/projects/acl
 Dependencies: attr

Searching for packages sources by name:

 $ pkgman search -vv glibc
 -- search ([i] = installed)
 [i] glibc 2.32-5: GNU C Library
 [i] glibc-32 2.32-5: GNU C Library (32bit)

 $ pkgman search -vv --regex '^(glib)c?$'
 -- search ([i] = installed)
 [i] glib 2.70.1-1: Common C routines used by Gtk+ and other libs
 [i] glibc 2.32-5: GNU C Library

Searching for packages sources by words in their description:

 $ pkgman dsearch -vv archive
 -- search ([i] = installed)
 [i] cpio 2.13-2: Copy files into or out of a cpio or tar archive
 [i] libarchive 3.5.2-1: Multi-format archive and compression
library
 [] unrar 6.0.7-1: Extracts RAR archives
 [] zip 3.0-1: Compression and file packaging/archive utility

Viewing dependency lists:

 $ pkgman dep bash
 readline

 $ pkgman dep bash --recursive
 readline
 ncurses

 $ pkgman dep bash --recursive --tree -vv
 -- dependencies ([i] = installed, --> seen before)
 [i] bash 5.1.8-1: GNU Bourne Again Shell
 [i] readline 8.1.1-1: Lets users edit command lines as they are

Zeppe-Lin Handbook

Page 19handbook 2.0.0

 typed in
 [i] ncurses 6.3-1: System V Release 4.0 curses emulation
library

Installing packages:

 $ pkgman install --deps xterm

Important:

The install command DOES NOT process dependencies
without --deps option,
and it's usually recommended to use --deps with install. It is also worth noting that
pkgman(1)
by default tries to install all the packages specified in the
dependencies,
and if one of the dependencies does not build, it will
skip it, and go further. In the end,
it will show the build-failed
 packages in the report. This behavior can have
unexpected
consequences if you install many programs with many dependencies at a

time. Because, one dependency may not build, and affect the building
of another
dependency, and thereby affect the third, etc.

We can tell pkgman(1) not to skip the fails, but to stop. Then
we can fix the package build and
start installation further.

There is an option --group for this. In this handbook, it is
recommended to use it always,
unless you know what you are doing.

 $ pkgman install --deps --group xterm

In case one of the dependency builds has failed, just fix it and
retry:

 $ pkgman install --deps --group --force xterm

The option --force tell to pkgman(1) to skip installation of
already installed package(s). It just
ignores the package and
installs next in the listed order. At the end of the installation

procedure, all skipped packages will be in the report.

Viewing and updating outdated packages:

Since the packages sources for Zeppe-Lin are distributed via git(1), the first thing to do is to
update the pkgsrc
collections:

 $ git -C /usr/src/pkgsrc-core pull
 $ git -C /usr/src/pkgsrc-system pull
 $ git -C /usr/src/pkgsrc-xorg pull
 $ git -C /usr/src/pkgsrc-desktop pull

It's maybe annoying to do these few steps every time you want to
synchronize pkgsrc
repositories. If so, just add these steps to
your crond(8) daemon and synchronize your local
repos once a week,
for example.

Listing installed packages that are out of date
(including their new dependencies):

 $ pkgman diff --deps --full
 -- Differences between installed packages and packages' sources
 Package Installed Available

 bind 9.16.7-1 9.16.8-1
 bindutils 9.16.8-1

 --
 1 update, 1 install

Updating an individual package:

 $ pkgman update --deps --group bind

Zeppe-Lin Handbook

Page 20handbook 2.0.0

Updating all installed packages:

 $ pkgman sysup --deps --depsort --group

5.3.2. Configuration

pkgman's main configuration file, /etc/pkgman.conf, contains
options that can be used to change
pkgman's behavior. Notably in
this file, the following options can be configured:

* pkgsrcdir

This option can occur multiple times and specifies a directory with a
packages' sources
"collection" which pkgman(1) should check in its
operation. By default, the core collection is
enabled, but system, xorg, desktop, and stuff collections are
commented.

* runscripts

This option configures pkgman(1) to run pre-install, post-install, pre-remove, and
post-remove scripts if they
exist in the package source directory. These scripts are run during
install, update, sysup, and remove operations.

It is recommended that this be enabled as in many cases if these
scripts exist in a package
source directory, it is required to be
run for proper operation.

* logfile

This option configures a file for pkgman to log its operation if
desired.

This is NOT an exhaustive list of all of pkgman's commands,
features, and configuration options,
merely a starting point. More
information can be found in pkgman(1) and pkgman.conf(5).

5.4. Creating Packages
Creating a package is done using pkgmk(8). This utility uses a
file called Pkgfile (see Pkgfile(5) for
more info), which
contains information about the package (such as name, version, etc)
and the
commands that should be executed in order to compile the
package in question. To be more specific,
the Pkgfile file is
actually a POSIX sh(1p) script, which defines a number of variables
(name, version,
release, and source) and a function (build). Below is
an example of what a Pkgfile file might look like.
The example
shows how to package the grep(1) utility. Some comments are
inserted for explanation.

 # Specify the name of the package.
 name=grep

 # Specify the version of the package.
 version=2.4.2

 # Specify the package release.
 release=1

 # The source(s) used to build this package.
 source=ftp://ftp.ibiblio.org/pub/gnu/$name/$name-$version.tar.gz

 # The build() function below will be called by pkgmk when
 # the listed source files have been unpacked.
 build() {
 # The first thing we do is to cd into the source directory.
 cd $name-$version

 # Run the configure script with desired arguments.
 # In this case we want to put grep under /usr/bin and
 # disable national language support.
 ./configure --prefix=/usr --disable-nls

Zeppe-Lin Handbook

Page 21handbook 2.0.0

 # Compile. Use the verbose flag (V=1) to see/log the
 # compilation flags at build time.
 make V=1

 # Install the files, BUT do not install it under /usr,
 # instead we redirect all the files to $PKG/usr by setting
 # the DESTDIR variable. The $PKG variable points to a
 # temporary directory which will later be made into a
 # tar.gz-file. Note that the DESTDIR variable is not used
 # by all Makefiles, some use prefix and others use ROOT,
 # etc. You have to inspect the Makefile in question to
 # find out. Some Makefiles do not support redirection at
 # all. In those cases, you will have to create a patch for
 # it.
 make DESTDIR=$PKG install

 # Remove unwanted files, in this case, the info-pages.
 rm -rf $PKG/usr/info
 }

In reality, you do not include all those comments, so the real Pkgfile
for grep(1) looks like this:

 # Description: Pattern matching utilities
 # URL: https://www.gnu.org/software/grep/grep.html

 name=grep
 version=2.4.2
 release=1
 source=https://ftpmirror.gnu.org/gnu/$name/$name-$version.tar.xz

 build() {
 cd $name-$version

 ./configure --prefix=/usr --disable-nls

 make V=1
 make DESTDIR=$PKG install

 rm -rf $PKG/usr/info
 }

Note that the build() function in the example above is just an
example of how grep is built. The
contents of the function can differ
significantly if the program is built in some other way, e.g. does not

use autoconf.

When the build() function has been executed, the $PKG directory
will be made into a package named
name#version-release.pkg.tar.gz.
Before the package creation is completed, pkgmk(8) will check the

content of the package against the .footprint file. If this file
does not exist, it will be created and the
test will be skipped. The .footprint file will contain a list of all files that should be in
the package if the
build was successful or a list of all the files
that were installed in $PKG (if the .footprint did not already

exist). If there is a mismatch the test will fail and an error
message will be printed. You should NOT
write the .footprint file
by hand. Instead, when a package has been upgraded and you need to
update
the contents of the .footprint file you simply do pkgmk
 -uf. This test ensures that a rebuild of the
package turned out as
expected.

Zeppe-Lin Handbook

Page 22handbook 2.0.0

If the package is built without errors it's time to install it by
using pkgadd(8) and try it out. It's highly
recommended to look at
the Pkgfile in another package(s) since looking at examples is a
great way to
learn.

A detailed guideline is described in Pkgfile(5) manual page.

5.5. Adjusting/Configuring the Package Build Process
Many settings of the package build process can be adjusted by
editing the pkgmk(8) configuration file
/etc/pkgmk.conf. Some
of these configurable settings include:

* CFLAGS, CXXFLAGS

Define optimization and architecture options for package compilation.

It's best NOT change these settings unless you absolutely know what
you're doing!

* PKGMK_SOURCE_MIRRORS

Define location(s) from which pkgmk will attempt to fetch source
archives.

* PKGMK_SOURCE_DIR

Define location where pkgmk will store (if downloading) and use source
archives when building.

* PKGMK_PACKAGE_DIR

Define location where pkgmk will create package files once the build
process is complete.

* PKGMK_WORK_DIR

Define a work area that pkgmk will use to build the package.

Here are some examples:

 PKGMK_SOURCE_MIRRORS="http://fileserver.intranet/dist/sources/"

This setting instructs pkgmk to attempt to fetch all source
archives from
http://fileserver.intranet/dist/sources/ before
falling back to the source URL specified in the Pkgfile.
Multiple
URLs can be separated by spaces (the spaces in the URL itself replace
by %20!).

 PKGMK_SOURCE_DIR="/var/cache/pkgmk/sources"

This setting instructs pkgmk to store and find source archives
in /var/cache/pkgmk/sources. An
example benefit of this setup
would be the ability to store /var/cache/pkgmk/sources on an NFS
server on your local network for use by multiple Zeppe-Lin
installations. PKGMK_PACKAGE_DIR can
be set and used the same way.

 PKGMK_WORK_DIR="/var/cache/pkgmk/work/$name"

This setting instructs pkgmk to use /var/cache/pkgmk/work/$name as a work area for building
the
specified package. Building the grep package would result in the
work area being
/var/cache/pkgmk/work/grep. An alternative would
be to use a tmpfs(5) as your work directory.

There are a few more settings that can be found on the pkgmk.conf(5) manual page.

Zeppe-Lin Handbook

Page 23handbook 2.0.0

6.0. THE PKGSRC SYSTEM
6.1. Introduction

6.1.1. What is a package source?

A package source is a directory containing the files needed for
building a package using pkgmk(8).
This means that this directory
at least has the files Pkgfile (which is the package build
description)
and .footprint (which is used for regression testing
and contains a list of files this package is expected
to contain once
it is built). Further, a package source directory can contain patches
and/or other files
needed for building the package, even software
sources. It is important to understand that the actual
source code
for the package is not necessarily present in the package source
directory. Instead, the
Pkgfile contains an URL that points to a
location where the source can be downloaded.

The use of the words "package source" in this context is borrowed
from the NetBSD world, where a
package refers to a set of files and
building instructions that describe what's necessary to build a

certain piece of software.

6.1.2. What is a pkgsrc repository?

The term pkgsrc repository refers to a remote repository
containing packages' sources: build scripts
and files for building
binary packages.

6.1.3. The pkgsrc collections

Packages' sources are organized in so-called collections. There are
five different layers (or five
categories) of packages.

* pkgsrc-core

This collection contains build scripts and files for the packages
required to create a basic system,
on the basis of which you can build
your installation. The official rootfs images are built based on
this
collection.

Of course, this collection shouldn't have dependencies outside itself.
To enforce this rule during
maintenance see Makefile
in the collection root directory. This Makefile checks collection
files for
typical errors, including misconfigured dependencies, and is
included in the other collections too.
Also, see pkgmaint and corresponding system/pkgmaint package for various package
maintaining utilities.
It will not be superfluous to mention revdep(1).

* pkgsrc-system

This collection contains build scripts and files for the packages
required for minimal installation on
real hardware: boot loader,
filesystem utilities, hw-monitors, servers, and so on. Packages in
this
collection depend only on the pkgsrc-core collection.

* pkgsrc-xorg

This collection contains build scripts and files for the packages
required for X Window System
applications. Packages in this
collection depend on the pkgsrc-system collection.

* pkgsrc-desktop

This collection contains build scripts and files for the packages
typically used on a desktop: web
browser, music/video player, file
manager, chat messenger, etc. Packages in this collection
depend on
the pkgsrc-xorg collection.

* pkgsrc-stuff

This collection contains build scripts and files for the packages that
do not fit into the above
categories. Packages in this collection may
depend on any of the collections listed above. Since
this collection
contains packages of different (often dubious) quality and purpose, we
will not use it
in the examples and warn you that if you can live
without it - it's better to do so.

Zeppe-Lin Handbook

Page 24handbook 2.0.0

6.2. Using The Pkgsrc
6.2.1. Synchronizing your local pkgsrc repository

When Zeppe-Lin is installed for the first time there are no local
pkgsrc collections (usr/src/pkgsrc*). To
obtain the collection
you need the first time, use git clone. Example:

 # cd /usr/src/
 # git clone https://github.com/zeppe-lin/pkgsrc-core
 # git clone https://github.com/zeppe-lin/pkgsrc-system
 # git clone https://github.com/zeppe-lin/pkgsrc-xorg
 # git clone https://github.com/zeppe-lin/pkgsrc-desktop

Edit /etc/pkgman.conf and enable the collections you cloned. By
default, only core collection is
enabled. See pkgman.conf(5)
for more information.

To bring your local core collection up to date use git pull.
Example:

 # git -C /usr/src/pkgsrc-core pull
 # git -C /usr/src/pkgsrc-system pull
 # git -C /usr/src/pkgsrc-xorg pull
 # git -C /usr/src/pkgsrc-desktop pull

Depending on what collections you already have.

It's maybe annoying to do these few steps every time you want to
synchronize pkgsrc repositories. If
so, just add these steps to
your crond(8) daemon and sync your local repos once a week, for

example.

6.2.2. Listing local pkgsrc repositories

When the local pkgsrc repositories have been cloned/updated the
directory /usr/src/ will contain
some pkgsrc-??? directories.

Under each of these directories, you will find packages' sources:
build scripts and files for building
binary packages. You can simply
browse around in the directory structure to find out which packages'

sources are available. Let's take pkgsrc-core as an example:

 $ cd /usr/src/pkgsrc-core
 $ ls -p
 acl/ gcc/ libpcre/ psmisc/
 asciidoctor/ gdbm/ libpcre2/ py3-setuptools/
 attr/ gettext-tiny/ libpipeline/ python3/
 autoconf/ git/ libtirpc/ rc/
 automake/ glibc/ libtool/ rdate/
 ...

You can also use pkgman(1) with command list and option --all
to list all local packages' sources.
Example:

 $ pkgman list --all
 -- list ([i] = installed)
 [i] acl
 [i] alsa-lib
 [] alsa-ucm-conf
 [i] alsa-utils
 ...

Note:

pkgman will list the packages' sources from all pkgsrc
collections indicated in

Zeppe-Lin Handbook

Page 25handbook 2.0.0

/etc/pkgman.conf as pkgsrcdir.

Add the --path option to see the package source location:

 $ pkgman list --all --path
 -- list ([i] = installed)
 [i] /usr/src/pkgsrc-core/acl
 [i] /usr/src/pkgsrc-system/alsa-lib
 [] /usr/src/pkgsrc-system/alsa-ucm-conf
 [i] /usr/src/pkgsrc-system/alsa-utils

If you are looking for a specific package source, it might be easier
to use search command instead of
list | grep:

 $ pkgman search --path alsa
 -- search ([i] = installed)
 [i] /usr/src/pkgsrc-system/alsa-lib
 [] /usr/src/pkgsrc-system/alsa-ucm-conf
 [i] /usr/src/pkgsrc-system/alsa-utils

6.2.3. Listing version differences

To find out if the pkgsrc repository carries packages that are
different (likely newer) compared to the
versions currently installed
you can use pkgman-diff(1). If versions differences are found, the
output
could look like this:

 $ pkgman diff --deps --full

 -- Differences between installed packages and packages sources tree
 Package Installed Available

 aircrack-ng-scm 20211113-1 20211121-1
 cowpatty 4.8-1 4.8-2
 feh 3.7.2-1 3.7.2-2
 joomscan-scm 20211112-1 20211121-1
 trinity-extra-theme 0.4-3cc4340-2 0.1-1
 handbook 0.3-1 0.3.1-1

 -- Packages which was not found in the packages sources tree
 Package Installed Required by

 libncurses5-compat android-ndk-bin

 --
 6 updates

The option --deps calculates the new dependencies for available
packages. The option --full shows
the table above, not just the
list of packages.

Pay attention to trinity-extra-theme package. The available
package has a lower version than
the installed one. You can use --config-set="preferhigher yes" to prefer higher installed
versions over
lower packages, overwriting default preferhigher
configuration settings.

If no version differences were found, i.e. the system is in sync with
the packages sources structure,
the output will simply be:

 $ pkgman diff

Zeppe-Lin Handbook

Page 26handbook 2.0.0

 No differences found

6.2.4. Building and installing packages

Note:

The recommended way is to use pkgman-install(8). Here we will only
describe the steps to
better understand the build process.

Once you have found a package that you want to build and install you
simply go into the desired
package source directory and use pkgmk(8) to build it. Example:

 # cd /usr/src/pkgsrc-core/gawk
 # pkgmk -d

The -d option means download missing source files and tells pkgmk(8) to download the source(s)
specified in Pkgfile (in case
the source files are already downloaded this option is ignored). When
the
download is completed the package will be built.

Warning:

It is often not a good idea to build the packages with root
privileges. Some recipes for building
programs (Makefiles, etc) may
not be written correctly, and overwrite system files.

If you will build packages with non-root privileges, the installed
files will have user permissions. This is
wrong, both in terms of
security and distribution of these packages. It is better to use fakeroot(1), to
run pkgmk(8) in an environment faking root
privileges. Example:

 $ fakeroot pkgmk -d

The pkgman(1) already uses it in the default Zeppe-Lin
distribution.

If the package was built successfully you can use pkgadd(8) to
install or upgrade it. Example:

 # pkgadd gawk#3.1.5-3.pkg.tar.gz

6.2.5. Build packages as an unprivileged user

It is already done in the default Zeppe-Lin distribution. The
packages core/filesystem,
core/pkgmk, and core/pkgman have
corresponding configurations. However, it does not hurt to
describe
how to achieve this, so that you will know how it is done in
Zeppe-Lin or if you would like to
adjust default settings.

First, add a new user (pkgmk for example):

 # useradd -b /var/cache/ -m -s /bin/false -U pkgmk

This command will create the user pkgmk and the group with the same
name, with /var/cache/pkgmk
as the home directory and /bin/false
as the default shell.

Second, add the directories required for pkgmk(8) to build the
packages and set user pkgmk (which
we created previously) as their
owner:

 # mkdir -p /var/cache/pkgmk/{sources,packages,work}
 # chown -R pkgmk:pkgmk /var/cache/pkgmk/{sources,packages,work}

Third, specify these directories in /etc/pkgmk.conf, so that when
you call pkgmk(8), these directories
will be used.

 PKGMK_SOURCE_DIR=/var/cache/pkgmk/sources
 PKGMK_PACKAGE_DIR=/var/cache/pkgmk/packages
 PKGMK_WORD_DIR=/var/cache/pkgmk/work/$name-$$

Zeppe-Lin Handbook

Page 27handbook 2.0.0

Fourth, tell pkgman(1) to call pkgmk(8) on behalf of pkgmk
user. To do that, edit variable
makecommand in the /etc/pkgman.conf file as the following:

 makecommand sudo -H -u pkgmk fakeroot pkgmk

6.2.6. Renice pkgmk's child process

If you keep using your computer while compiling packages you will
notice that your box is much less
responsive than usual. This is
caused by having two groups of processes with the same nice
priority:
your usual running tasks on one side, and pkgman(1) (and
its child processes) on the other. Now, if
you could renice pkgman(1) and its children to a higher nice (i.e. lower priority!)
value (default is 0),
compiling would inevitably take somewhat longer,
but you could use your workstation without noticing
much difference to
its usual performance.

Just set up the makecommand in the /etc/pkgman.conf to something
like this:

 makecommand sudo -H -u pkgmk nice -n10 ionice -c2 -n6 fakeroot pkgmk

6.2.7. Build in ram

By default, Zeppe-Lin already has pkgmk user and /etc/fstab's
entry for this. Just edit /etc/fstab's
pkgmk entry, remove -pipe from /etc/pkgmk.conf, and type mount pkgmk.

Below is described how this was done in Zeppe-Lin.

Find your user id for pkgmk:

 $ id pkgmk

Edit /etc/fstab:

Add the following line to /etc/fstab

 pkgmk /var/cache/pkgmk/work tmpfs size=<SIZE>,uid=<UID>,defaults 0 0

The SIZE is the memory size for /var/cache/pkgmk/work. Add the
postfix M for megabytes, or G for
gigabytes. Example: 16G.

The UID is the pkgmk's user id.

Mount the tmpfs:

 # mount pkgmk

Edit /etc/pkgmk.conf:

Set where you put your RAM file system from /etc/fstab file:

 PKGMK_WORK_DIR="/var/cache/pkgmk/work/$name"

Remove -pipe from all your CFLAGS and CXXFLAGS.

Zeppe-Lin Handbook

Page 28handbook 2.0.0

7. CONFIGURATION
7.1. Generating Locales

glibc does not contain all possible locales, thus you'll have to
generate the locales you need/use. To
ensure the proper operation of pkgmk(8), the locale C.UTF-8 is generated as part of the glibc
package. Any other desired locales must be created by the
administrator.

The following example is a typical setup for US users, replace en_US* with the locale you want:

 # localedef -i en_US -f UTF-8 en_US.UTF-8

To use this locale system-wide, add export LANG=en_US.UTF-8 to /etc/profile.

7.2. Initialization Scripts
7.2.1. Runlevels

The following runlevels are used in Zeppe-Lin (defined in /etc/inittab):

 +----------+------------------+
 | Runlevel | Description |
 +----------+------------------+
 | 0 | Halt |
 | 1 (S) | Single-User Mode |
 | 2 | Multi-User Mode |
 | 3-5 | (Not Used) |
 | 6 | Reboot |
 +----------+------------------+

See inittab(5) for more information about runlevels.

7.2.2. Layout

The initialization scripts used in Zeppe-Lin follow the BSD-style
(as opposed to the SysV-style) and
have the following layout:

 +------------------+---------------------------------+
 | File | Description |
 +------------------+---------------------------------+
 | /etc/rc | System boot script |
 | /etc/rc.single | Single-user startup script |
 | /etc/rc.multi | Multi-user startup script |
 | /etc/rc.modules | Module initialization script |
 | /etc/rc.local | Local multi-user startup script |
 | /etc/rc.shutdown | System shutdown script |
 | /etc/rc.conf | System configuration file |
 | /etc/rc.d/ | Service start/stop directory |
 +------------------+---------------------------------+

/etc/rc.local is empty by default.

Modify /etc/rc.modules, /etc/rc.local, and /etc/rc.conf
according to your needs. See rc.conf(5) and rc(8)
for more
information about rc.conf configuration file and initialization
scripts.

Zeppe-Lin Handbook

Page 29handbook 2.0.0

7.3. Network Configuration
7.3.1. Static address

The network configuration is found in the RC script /etc/rc.d/net.
To enable this service you need to
add net to the SERVICES
string in /etc/rc.conf. By default, this RC script configures a
static IP
address. Example:

 #!/bin/sh -e
 #
 # /etc/rc.d/net: start/stop network interface
 #

 DEV=enp11s0

 ADDR=192.168.1.100
 MASK=24
 GW=192.168.1.1

 case $1 in
 start)
 /sbin/ip addr add $ADDR/$MASK dev $DEV broadcast +
 /sbin/ip link set $DEV up
 /sbin/ip route add default via $GW
 ;;
 stop)
 /sbin/ip route del default
 /sbin/ip link set $DEV down
 /sbin/ip addr del $ADDR/$MASK dev $DEV
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 *)
 echo "usage: $0 [start|stop|restart]"
 ;;
 esac

 # End of file.

You will also need to configure DNS settings in /etc/resolv.conf.
Example:

 #
 # /etc/resolv.conf: resolver configuration file
 #

 search <your internal domain>
 nameserver <your DNS server>

 # End of file.

Zeppe-Lin Handbook

Page 30handbook 2.0.0

7.3.2. Dynamic address

If you want to configure your system to use a dynamic IP address,
install the dhcpcd package, edit
and run /etc/rc.d/dhcpcd
service:

 # $EDITOR /etc/rc.d/dhcpcd
 # /etc/rc.d/dhcpcd start

7.3.3. Wireless network

Before using wireless networking, use rfkill(8) to check whether
the relevant interfaces are soft- or
hard-blocked:

 $ rfkill list
 # rfkill unblock <ID|TYPE>

Next, install the wpa-supplicant package. It includes utilities to
configure wireless interfaces and
handle wireless security protocols.
To use wpa_supplicant, you will need to enable
/etc/rc.d/wpa_supplicant service.

To use WPA-PSK, generate a pre-shared key with wpa_passphrase(8)
and append the output to the
/etc/wpa_supplicant.conf file:

 # wpa_passphrase <MYSSID> <PASSPHRASE> >> /etc/wpa_supplicant.conf

Then, edit and run the following service files: /etc/rc.d/wpa_supplicant, /etc/rc.d/dhcpcd.

 # $EDITOR /etc/rc.d/wpa_supplicant
 # $EDITOR /etc/rc.d/dhcpcd
 # /etc/rc.d/wpa_supplicant start
 # /etc/rc.d/dhcpcd start

To use WPA-EAP generate the password hash like this:

 # echo -n <PASSPHRASE> | iconv -t utf16le | openssl md4

For WEP configuration, add the following lines to your /etc/wpa_supplicant.conf:

 network={
 ssid="MYSSID"
 key_mgmt=NONE
 wep_key0="YOUR AP WEP KEY"
 wep_tx_keyidx=0
 auth_alg=SHARED
 }

Zeppe-Lin Handbook

Page 31handbook 2.0.0

7.4. Passwords
Zeppe-Lin uses SHA512 passwords by default. To change the password
encryption method set the
ENCRYPT_METHOD variable in /etc/login.defs to DES, MD5, or SHA256.

Furthermore, when compiling programs that use the crypt(3) function
to authenticate users you should
make sure that these programs are
linked against the libcrypt library (i.e. use -lcrypt when
linking)
which contains the SHA512 version of the crypt function
(this version is backward compatible and
understands DES passwords
as well).

Zeppe-Lin Handbook

Page 32handbook 2.0.0

8. REPORTING BUGS
For bug reports, use the issue tracker at: https://github.com/zeppe-lin/handbook/issues.

	1. PREFACE
	2. INTRODUCTION
	2.1. What is Zeppe-Lin?
	2.2. Why use Zeppe-Lin?

	3. LICENSE
	3.1. Packages
	3.2. Build Scripts
	3.3. NO WARRANTY

	4. INSTALLATION
	4.1. Supported Hardware
	4.2. Boot a Live System
	4.3. Disk Partitions and Filesystems
	4.3.1. UEFI and LVM-on-LUKS
	4.3.1.1. Partition scheme
	4.3.1.2. Create the partitions
	4.3.1.3. Create LVM inside LUKS device
	4.3.1.4. Create the filesystems
	4.3.1.5. Mount prepared partitions

	4.4. Install Base System
	4.4.1. Download rootfs tarball
	4.4.2. Verify downloaded tarball
	4.4.3. Extract rootfs tarball

	4.5. Chroot Into Base System
	4.6. Configure The Base System
	4.7. Prepare The PKGSRC Repos
	4.8. Update The Base System
	4.9. Install essential packages
	4.10. Prepare a Linux Kernel
	4.10.1. Install kernel package
	4.10.2. Install the kernel manually

	4.11. Prepare Initramfs Image
	4.12. Install a Bootloader
	4.12.1. GRUB

	4.13. Post-installation Tasks
	4.13.1. Install X11
	4.13.2. Reboot

	5. THE PACKAGE SYSTEM
	5.1. Introduction
	5.1.1. Basic package management tools

	5.2. Using the Package System
	5.2.1. Installing a package
	5.2.2. Upgrading a package
	5.2.2.1. Rejected files

	5.2.3. Removing a package
	5.2.4. Querying the package database

	5.3. Package Management Front-end: pkgman
	5.3.1. Functionality
	5.3.2. Configuration

	5.4. Creating Packages
	5.5. Adjusting/Configuring the Package Build Process

	6.0. THE PKGSRC SYSTEM
	6.1. Introduction
	6.1.1. What is a package source?
	6.1.2. What is a pkgsrc repository?
	6.1.3. The pkgsrc collections

	6.2. Using The Pkgsrc
	6.2.1. Synchronizing your local pkgsrc repository
	6.2.2. Listing local pkgsrc repositories
	6.2.3. Listing version differences
	6.2.4. Building and installing packages
	6.2.5. Build packages as an unprivileged user
	6.2.6. Renice pkgmk's child process
	6.2.7. Build in ram

	7. CONFIGURATION
	7.1. Generating Locales
	7.2. Initialization Scripts
	7.2.1. Runlevels
	7.2.2. Layout

	7.3. Network Configuration
	7.3.1. Static address
	7.3.2. Dynamic address
	7.3.3. Wireless network

	7.4. Passwords

	8. REPORTING BUGS

